TA的每日心情 | 开心 2021-12-13 21:45 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。本篇介绍力求用容易理解的方式,介绍一下三次样条插值的原理,并附C语言的实现代码。
1. 三次样条曲线原理
假设有以下节点

1.1 定义
样条曲线 是一个分段定义的公式。给定n+1个数据点,共有n个区间,三次样条方程满足以下条件:
a. 在每个分段区间 (i = 0, 1, …, n-1,x递增), 都是一个三次多项式。
b. 满足 (i = 0, 1, …, n )
c. ,导数 ,二阶导数 在[a, b]区间都是连续的,即 曲线是光滑的。
所以n个三次多项式分段可以写作:
,i = 0, 1, …, n-1
其中ai, bi, ci, di代表4n个未知系数。
1.2 求解
已知:
a. n+1个数据点[xi, yi], i = 0, 1, …, n
b. 每一分段都是三次多项式函数曲线
c. 节点达到二阶连续
d. 左右两端点处特性(自然边界,固定边界,非节点边界)
根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。
插值和连续性:
, 其中 i = 0, 1, …, n-1
微分连续性:
, 其中 i = 0, 1, …, n-2
样条曲线的微分式:
 
将步长 带入样条曲线的条件:
a. 由 (i = 0, 1, …, n-1)推出
b. 由 (i = 0, 1, …, n-1)推出

c. 由 (i = 0, 1, …, n-2)推出

由此可得:

d. 由 (i = 0, 1, …, n-2)推出

设 ,则
a. 可写为:
,推出

b. 将ci, di带入 可得:
c. 将bi, ci, di带入 (i = 0, 1, …, n-2)可得:
端点条件
由i的取值范围可知,共有n-1个公式, 但却有n+1个未知量m 。要想求解该方程组,还需另外两个式子。所以需要对两端点x0和xn的微分加些限制。 选择不是唯一的,3种比较常用的限制如下。
a. 自由边界(Natural)
首尾两端没有受到任何让它们弯曲的力,即 。具体表示为 和 
则要求解的方程组可写为:

b. 固定边界(Clamped)
首尾两端点的微分值是被指定的,这里分别定为A和B。则可以推出


将上述两个公式带入方程组,新的方程组左侧为

c. 非节点边界(Not-A-Knot)
指定样条曲线的三次微分匹配,即


根据 和 ,则上述条件变为


新的方程组系数矩阵可写为:

右下图可以看出不同的端点边界对样条曲线的影响:

1.3 算法总结
假定有n+1个数据节点

a. 计算步长 (i = 0, 1, …, n-1)
b. 将数据节点和指定的首位端点条件带入矩阵方程
c. 解矩阵方程,求得二次微分值 。该矩阵为三对角矩阵,具体求法参见我的上篇文章:三对角矩阵的求解。
d. 计算样条曲线的系数:

其中i = 0, 1, …, n-1
e. 在每个子区间 中,创建方程
2. C语言实现
用C语言写了一个三次样条插值(自然边界)的S-Function,代码如下:


View Code
- #define S_FUNCTION_NAME cubic
- #define S_FUNCTION_LEVEL 2
- #include "simstruc.h"
- #include "malloc.h" //方便使用变量定义数组大小
- static void mdlInitializeSizes(SimStruct *S)
- {
- /*参数只有一个,是n乘2的定点数组[xi, yi]:
- * [ x1,y1;
- * x2, y2;
- * ..., ...;
- * xn, yn;
- */
- ssSetNumSFcnParams(S, 1);
- if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) return;
- ssSetNumContStates(S, 0);
- ssSetNumDiscStates(S, 0);
- if (!ssSetNumInputPorts(S, 1)) return; //输入是x
- ssSetInputPortWidth(S, 0, 1);
- ssSetInputPortRequiredContiguous(S, 0, true);
- ssSetInputPortDirectFeedThrough(S, 0, 1);
- if (!ssSetNumOutputPorts(S, 1)) return; //输出是S(x)
- ssSetOutputPortWidth(S, 0, 1);
- ssSetNumSampleTimes(S, 1);
- ssSetNumRWork(S, 0);
- ssSetNumIWork(S, 0);
- ssSetNumPWork(S, 0);
- ssSetNumModes(S, 0);
- ssSetNumNonsampledZCs(S, 0);
- ssSetSimStateCompliance(S, USE_DEFAULT_SIM_STATE);
- ssSetOptions(S, 0);
- }
- static void mdlInitializeSampleTimes(SimStruct *S)
- {
- ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
- ssSetOffsetTime(S, 0, 0.0);
- }
- #define MDL_INITIALIZE_CONDITIONS
- #if defined(MDL_INITIALIZE_CONDITIONS)
- static void mdlInitializeConditions(SimStruct *S)
- {
- }
- #endif
- #define MDL_START
- #if defined(MDL_START)
- static void mdlStart(SimStruct *S)
- {
- }
- #endif /* MDL_START */
- static void mdlOutputs(SimStruct *S, int_T tid)
- {
- const real_T *map = mxGetPr(ssGetSFcnParam(S,0)); //获取定点数据
- const int_T *mapSize = mxGetDimensions(ssGetSFcnParam(S,0)); //定点数组维数
- const real_T *x = (const real_T*) ssGetInputPortSignal(S,0); //输入x
- real_T *y = ssGetOutputPortSignal(S,0); //输出y
- int_T step = 0; //输入x在定点数中的位置
- int_T i;
- real_T yval;
- for (i = 0; i < mapSize[0]; i++)
- {
- if (x[0] >= map[i] && x[0] < map[i + 1])
- {
- step = i;
- break;
- }
- }
-
- cubic_getval(&yval, mapSize, map, x[0], step);
- y[0] = yval;
-
- }
- //自然边界的三次样条曲线函数
- void cubic_getval(real_T* y, const int_T* size, const real_T* map, const real_T x, const int_T step)
- {
- int_T n = size[0];
-
- //曲线系数
- real_T* ai = (real_T*)malloc(sizeof(real_T) * (n-1));
- real_T* bi = (real_T*)malloc(sizeof(real_T) * (n-1));
- real_T* ci = (real_T*)malloc(sizeof(real_T) * (n-1));
- real_T* di = (real_T*)malloc(sizeof(real_T) * (n-1));
-
- real_T* h = (real_T*)malloc(sizeof(real_T) * (n-1)); //x的??
-
- /* M矩阵的系数
- *[B0, C0, ...
- *[A1, B1, C1, ...
- *[0, A2, B2, C2, ...
- *[0, ... An-1, Bn-1]
- */
- real_T* A = (real_T*)malloc(sizeof(real_T) * (n-2));
- real_T* B = (real_T*)malloc(sizeof(real_T) * (n-2));
- real_T* C = (real_T*)malloc(sizeof(real_T) * (n-2));
- real_T* D = (real_T*)malloc(sizeof(real_T) * (n-2)); //等号右边的常数矩阵
- real_T* E = (real_T*)malloc(sizeof(real_T) * (n-2)); //M矩阵
-
- real_T* M = (real_T*)malloc(sizeof(real_T) * (n)); //包含端点的M矩阵
-
- int_T i;
-
- //计算x的步长
- for ( i = 0; i < n -1; i++)
- {
- h[i] = map[i + 1] - map[i];
- }
-
- //指定系数
- for( i = 0; i< n - 3; i++)
- {
- A[i] = h[i]; //忽略A[0]
- B[i] = 2 * (h[i] + h[i+1]);
- C[i] = h[i+1]; //忽略C(n-1)
- }
-
- //指定常数D
- for (i = 0; i<n - 3; i++)
- {
- D[i] = 6 * ((map[n + i + 2] - map[n + i + 1]) / h[i + 1] - (map[n + i + 1] - map[n + i]) / h[i]);
- }
-
-
- //求解三对角矩阵,结果赋值给E
- TDMA(E, n-3, A, B, C, D);
-
- M[0] = 0; //自然边界的首端M为0
- M[n-1] = 0; //自然边界的末端M为0
- for(i=1; i<n-1; i++)
- {
- M[i] = E[i-1]; //其它的M值
- }
-
- //?算三次?条曲?的系数
- for( i = 0; i < n-1; i++)
- {
- ai[i] = map[n + i];
- bi[i] = (map[n + i + 1] - map[n + i]) / h[i] - (2 * h[i] * M[i] + h[i] * M[i + 1]) / 6;
- ci[i] = M[i] / 2;
- di[i] = (M[i + 1] - M[i]) / (6 * h[i]);
- }
-
- *y = ai[step] + bi[step]*(x - map[step]) + ci[step] * (x - map[step]) * (x - map[step]) + di[step] * (x - map[step]) * (x - map[step]) * (x - map[step]);
-
- free(h);
- free(A);
- free(B);
- free(C);
- free(D);
- free(E);
- free(M);
- free(ai);
- free(bi);
- free(ci);
- free(di);
- }
- void TDMA(real_T* X, const int_T n, real_T* A, real_T* B, real_T* C, real_T* D)
- {
- int_T i;
- real_T tmp;
- //上三角矩阵
- C[0] = C[0] / B[0];
- D[0] = D[0] / B[0];
- for(i = 1; i<n; i++)
- {
- tmp = (B[i] - A[i] * C[i-1]);
- C[i] = C[i] / tmp;
- D[i] = (D[i] - A[i] * D[i-1]) / tmp;
- }
- //直接求出X的最后一个值
- X[n-1] = D[n-1];
- //逆向迭代, 求出X
- for(i = n-2; i>=0; i--)
- {
- X[i] = D[i] - C[i] * X[i+1];
- }
- }
- #define MDL_UPDATE
- #if defined(MDL_UPDATE)
- static void mdlUpdate(SimStruct *S, int_T tid)
- {
- }
- #endif
- #define MDL_DERIVATIVES
- #if defined(MDL_DERIVATIVES)
- static void mdlDerivatives(SimStruct *S)
- {
- }
- #endif
- static void mdlTerminate(SimStruct *S)
- {
- }
- #ifdef MATLAB_MEX_FILE
- #include "simulink.c"
- #else
- #include "cg_sfun.h"
- #endif
复制代码
3. 例子
以y=sin(x)为例, x步长为1,x取值范围是[0,10]。对它使用三次样条插值,插值前后对比如下:

|
|